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Single and polygenic traits
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Phenotypic trait

Polygenic/quantitative traits:

size, behaviour, swim-speed

Few-loci traits:
colour, sex-determination
inherited diseases



How genetic variation arises

1. Mutation
a. Deletions or insertions of nucleotides

protein 1 x 10-6

microsatellites 0.7-10 x 10-5

SNPs 1-10 x 10-9

1 ind. out of 1.000.000 carries a new mutation in a protein

b. Chromosomal rearrangements
(inversions, duplications, fusions, fissions…)

- Results in big or no problems

Dog whelk



The fate of a new mutation:

Initial frequency = 1/2Na

carried as a heterozygote by only 
one individual of a population

Positive for fitness:
A1A1 1+s
A1A2 1+s/2
A2A1 1
Probability of fixation* = 2s (Ne/Na) , 
if 2s is small and Ne is large

*Fixation = frequency of 1.00



The fate of a new mutation:

Initial frequency = 1/2Na

Negative for fitness:
A1A1 1-s
A1A2 1-s/2
A2A2 1

Mutation will disappear if 2Nes>>1  (relatively large population)
but it will take 2(Ne/Na)[ln(2Na/2Nes)+1-0.58] to get rid of it

For Ne=Na=10 000 and s=1% disadvantage, ≈9.6 generations
For Ne=Na=10 000 and s=10% disadvantage, ≈5 generations



Neutral for fitness:
A*A* 1
A*A 1
AA 1
Probability of fixation = 1/2Na
Probability of loss = 1-1/2Na

Time to fixation = 4Ne generations

For Ne=Na=10 000,   40 000 generations

Time for disapperance = 2(Ne/Na) ln(2Na)

For Ne=Na=10 000, ≈ 20 generations

Positive, negative or neutral?



2. Recombination

A    a
B    b

Zygote (2n)

meiosis
AB

Ab

ab

aB

Gametes (n)

Extended to polygenic traits - infinite # of combinants

2 loci



Hardy-Weinberg equilibrium
(the ”null hypothesis” of population genetics)

Populations maintain stable allele frequencies from
generation to generation if:
1. Diploid organisms
2. Sexual reproduction
3. Random mating
4. Nonoverlapping generations
5. No selection
6. No migration
7. No mutation
8. Infinite population size

(AA)=p2 p=freq of allele A

(Aa)=2pq q=freq of allele a

(aa)=q2



With finite population size à genetic drift

Ne =20
p =q = 0.5

50:50

Ne =20
p = 0.7 och q = 0.3

An infinite number of gametes
are produced

New adults are sampled
at random among the gametes



Drift removes genetic variation
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Random genetic drift is strongest if

a) populations are small
and/or

b) alleles are neutral



Large populations:

Allele frequencies will change according to
genotype fitnesses

Genotype AA Aa aa
Frequency p2 2pq q2

Fitness w11 w12 w22

Mean fitness:
w = p2 w11 +2pq w12 + q2 w22

Change in p per generation:
∆p = pq[p(w11- w12) + q(w12 - w22)]/ w 

Selection most often violates HW equilibrium



Constant selection generates equilibrium frequencies

w11 > w12 > w22 A will be fixed and a lost
w11 < w12 < w22 a will be fixed and A lost
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Island model
N = (Ne)
m = proportion of N migrating

each generation
Nm = number of migrants

Stepping-stone model

Gene flow



FST = Degree of genetic differentiation between populations

FST = 1, max differentiation

FST = 0, no differentiation

Differentiation between populations (FST)

Fixed for different alleles in a SNP locus

Same allele frequencies in a SNP locus



Gene flow, mutation and drift in an island model
(no selection)
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Equilibrium between
drift (loss of variation), 
migration and mutation (adding variation)

Stepping-stone model:
FST = 1/[(4N√2mµ) +1]

Island model:
FST = 1/[4N(m+µ) +1]

For µ = 10-6, m = 0.1, N = 50

0.33

0.97



Gene flow and drift - island model
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Island model:
FST = 1/(4Nm +1)
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Gene flow and selection over an ecotone
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A2 favoured by selectionA1 favoured by selection

w11 = 1, w12 = 1-s/2, w22 = 1-s w11 = 1-s, w12 = 1-s/2, w22 = 1

S.D. of dispersal



Population fragmentation and changes in FST

FST
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Non-equilibria is likely to be common
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More about F-statistics

FIS, inbreeding coefficient (deviation from random mating) within a subpopulation
FIT, inbreeding coefficient (deviation from random mating) between/among subpopulations

FST, differentiation between/among subpopulations

A1A4

A4A4

A1A1

A1A1

A1A4

subpopulation 1

A4A4

A4A4

A4A4

A2A4

A1A3

A2A3

A2A2

A1A2

subpopulation 2

A4A4

A4A4

A4A4

Total population

FIS = 1-(Hobs/Hexp)
FST = 1-(average Hexp of all subpops/total Hexp)

FIT = 1-(Hobs/total Hexp)

FST = (FIT - FIS)/(1-FIS)



FST – still one of the most used indexes of genetic differentiation



FIS – is a classical index of inbreeding…

Source: https://www.instituteofcaninebiology.org/

FIS = 1 - (Hobs/Hexp)

positive values à Hobs < Hexp



FIS and may also be used to estimate cloning

FIS = 1 - (Hobs/Hexp)

negative values à Hobs > Hexp



Genetic effects of population bottlenecks



Genetic variation is lost in relation to effective population size (Ne) and (population increase) R0

1/(2N) of the heterozygosity is lost per generation

H0

R0 = 10

R0 = 1

R0 = 2

0.5xH0

2 64 108
Generation

Ne0 =4

Ne10 =2048

Ne10 >2 milj

Ne10 =2

Ne0 =2



Lost genetic variation is restored by mutation and gene flow (if present)

If only mutations - restoration will take 100,000s of generations for specific
SNPs (see mutation rates), 
but will be more rapid for quantitative traits (e.g., 100-1000 generations)

Demographic inferences of DNA sequencing data can be used to trace historic
bottlenecks
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[A1 A1] = p2

[A1 A2] = 2pq
[A2 A2] = q2

[A1 A1] = p2+ p
2

[A1 A2] = 2pq-2  p
2

[A2 A2] = q2+    p2

Fragmentation creates a deficiency of heterozygotes
- a Wahlund effect

The Wahlund effect



Genetic linkage

A    a
B    b

A    a
B    b

AB-25%
Ab-25%
aB-25%
ab-25%

recombined gametes

AB-40%
Ab-10%
aB-10%
ab-40%

linked gametes

AB-50%
Ab
aB
ab-50%

free recombination
r =0.5
D=0.0

linkage disequilibrium
r =20/100=0.2
D=0.15

absolute linkage
r =0
D =0.25
Dmax=0.5x0.5=0.25crossing-over

breaks linkage

r, recombination fraction
D, disequilibrium
D=pABpab-pAbpaB
Dmax=pAqb or paqB



Decay of linkage over time
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longer periods of time,
and genes inside inversions



Overdominance can explain stable polymorphisms

Heterozygote favoured by selection

AA Aa aa
1 1+s* 0

Even under extreme conditions, aa will remain in the population. 
This will generate a ”genetic load”



Negative frequency dependent selection
can explain stable polymorphisms

Genotype favoured by selection while rare

AA Aa aa
1 1 >1 while rare

aa will increase up to equilibrium when no longer favoured due to 
increased frequency



Dominant or recessive makes a difference
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Dominant favoured
AA 1.0
Aa 1.0
aa 0.9

Recessive favoured
AA 0.9
Aa 0.9
aa 1.0


